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Abstract

An analytical solution of the countercurrent thermal regenerator problem when its cyclic steady!state is established is
given[ It takes account of the ~ushing phase\ i[e[ of that part of the blow involved in removing the residue of ~uid from
a previous blow[ In fact\ it is possible for some gas particles to remain always within the regenerator\ without exiting
either end[ The proposed analytical approach is based on a Lagrange frame of reference for evaluating the ~uid
temperature during an entire operation cycle[ This temperature is obtained as a function of the time and location within
the regenerator and its pro_le depends on two dimensionless parameters] the reduced length and the ~ushing ratio[ The
method allows the matrix temperature pro_le to be obtained\ too[ The knowledge of the gas and matrix dimensionless
temperature pro_les in a graphical form allows a complete estimation of the dimensionless heat exchanged between gas
and matrix during a semi!period at a given location[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

Af cross!sectional area for ~ow
cp\ cv speci_c heats at constant pressure and volume
cwrw heat capacity of matrix per unit of volume
f friction factor
`z gas speci_c potential energy
h convective heat transfer coe.cient
H speci_c enthalpy
L regenerator length
n nth operation cycle of regenerator
p pressure
P matrix wetted perimeter
q quantity equal to x¦

i

Q heat exchanged
Q
 heat exchanged per unit of length] dQ:dj

Q¦ dimensionless heat exchanged] Q
:ðhP"Th−Tk#t9Ł
rh hydraulic radius] Af:P
R speci_c gas constant
s dimensionless location within the regenerator] x:L
t time
T temperature
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u gas ~ow velocity
U speci_c internal energy
x space coordinate within the regenerator
x¹ h\ x¹k lengths de_ned in the text
xi initial location of gas particle
x¦

i dimensionless initial location of gas particle] xi:L
y dimensionless location within the regenerator] j:L[

Greek symbols
o ~ushing ratio] 1L:"ut9#
u dimensionless temperature] "T−Tk#:"Th−Tk#
L reduced length] hL:"cp\frf=u=rh#
j generic location within the regenerator
r density
t generic time instant
tb blow period time
ti initial time instant
tr reverse period time
t9 time of an entire operation cycle] tb¦tr

t¦ dimensionless time instant] "t−nt9#:t9[

Subscripts
b blow period
f ~uid
h hot space\ inlet of hot ~uid
i initial
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j this index equals either b or r
k cold space\ inlet of cold ~uid
r reverse period
w matrix[

Superscripts
? 9 ¾ xi\b ¾ j^ 9 ¾ qb ¾ y
ý x¹k ¾ xi\b ³ 9^ x¹k:L ¾ qb ³ 9
� j ¾ xi\r ¾ L^ y ¾ qr ¾ 0
�� L ³ xi\r ¾ x¹ h^ 0 ³ qr ¾ x¹ h:L[

Other symbol
' regenerator porosity] void volume\ total volume[

0[ Introduction

In countercurrent _xed!bed thermal regenerators\ the
cold and hot ~uids pass alternatively and in the opposite
direction over a solid wall matrix] the matrix gives up
heat when the cold ~uid ~ows over it "heating period or
{blow period|# and subsequently absorbs this heat from
the hot ~uid "cooling period or {reverse period|#\ the
process being repeated cyclically[

The analysis of a thermal regenerator may be per!
formed following two di}erent approaches ð0Ł] "0# analy!
sis of the start of operation and "1# analysis of the cyclic
operation[

If the time required for an element of gas to pass
through the regenerator is short compared to the time of
either semi!period "blow period or reverse period#\ then
a Euler point of view may be applied to the ~uid in both
the approaches in order to get the solution of the thermal
regenerator problem ð0Ł[

If\ instead\ the time required for a gas particle to pass
through the regenerator is approximately equal to the
blow time "or reverse time#\ like it happens in rapidly
cycled heat regenerators "e[g[\ Stirling machine regen!
erators ð1Ð3Ł and gas turbine rotary regenerators ð4Ł#\
then a Lagrange point of view allows the solution to be
obtained {naturally| and therefore\ in a less complex way\
as shown by Organ ð5Ð7Ł[

In addition\ in order to account for that part of the
blow involved in removing the residue of ~uid from a
previous blow\ Organ introduced a new dimensionless
parameter\ the ~ushing ratio o and the phenomenon was
called ~ushing phase ð5\ 6Ł[ This parameter was de_ned
as the ratio of the regenerator length to the gas particle
excursion amplitude\ that is the ratio of the time period
required for a gas particle to complete a regenerator
traverse to the time of a semi!period[

The concept of ~ushing ratio for thermal regenerators
is very similar to the concept of critical length ratio intro!
duced previously by Organ for the heater and cooler of
Stirling cycle machines ð8Ł and later used by Simon et al[\
in order to characterise\ together with other dimension!

less parameters\ the e}ect of oscillating ~ow on pressure
drop and heat transfer rates in tubes ð09Ð01Ł[

As a matter of fact\ the concept of ~ushing phase
was understood _rst by Rea and Smith Jr[ ð02Ł\ who
introduced a correction factor on the regenerator reduced
length L introduced by Hausen ð0Ł[ However\ this factor
considered simultaneously the e}ect of both pressure
variations and ~ushing phase on the performance of ther!
mal regenerators and in addition\ its mathematical mod!
elling was not very clear[

The proposed analytical approach does not analyse the
transient thermal response of the regenerator until the
cyclic operation is established\ but directly the _nal steady
periodic state[ This state is reached when the heat trans!
ferred to the matrix during the ~ow of the hot gas stream
"reverse period# is equal to the heat released from the
matrix during the ~ow of the cold stream "blow period#[

The procedure implies _rstly the calculation of the
~uid temperature as a function of the matrix temperature
during both the blow period and the reverse period[ This
calculation is\ in particular\ carried out in a closed!form
on the basis of some simplifying assumptions "e[g[\ the
thermal capacity of the matrix is assumed in_nitely large#\
by solving the gas energy di}erential equation along a
path followed by a selected gas particle "Lagrange point
of view# because of the presence of ~ushing phase[ The
next step is to derive\ always in an analytical form\ the
matrix temperature pro_le by solving a linear integral
equation[ Once the matrix temperature pro_le is
obtained\ the gas temperature may be evaluated and
hence presented in a graphical form[

1[ Governing equations

The governing di}erential equations are derived by
making a mass balance\ a momentum balance and energy
balances for the ~uid and for the matrix in an elemental
control volume\ dx long\ at position x within the regen!
erator\ as is shown in Fig[ 0[ The assumptions made in
deriving the listed equations are]

Fig[ 0[ Schematic representation for the analysis of the
regenerator[
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"0# the regenerator is one!dimensional\ that is no vari!
ations normal to the x!direction^

"1# the thermal conductivities of the matrix and ~uid are
zero parallel to the ~uid ~ow and in_nitely large
normal to the ~uid ~ow^

"2# the matrix properties speci_c heat cw and density rw

are independent of temperature^
"3# the cross!sectional free!~ow area\ Af\ of the regen!

erator is constant[

For the matrix material within the di}erential control
volume\ the basic equation is]

+ matrix energy equation]

hPðTf "x\ t#−Tw"x\ t#Ł � cwrwAf 0
0−'

' 1
1Tw"x\ t#

1t
[ "0#

For the ~uid within the di}erential control volume\ the
basic equations are]

+ ~uid mass equation]

1

1x
"rfu#¦

1rf

1t
� 9 "1#

+ ~uid momentum equation]

rf

1u
1t

¦rf

1

1x 0
u1

1
¦`z1¦

1p
1x

¦frf

u1

1
0
rh

� 9 "2#

+ ~uid energy equation]

hPðTw"x\ t#−Tf "x\ t#Ł � Af

1

1t
"rfUf#

¦Af

1

1x $rfu 0Hf¦
u1

1
¦`z1%[ "3#

In the listed equations h and f may be linked to u
and rf by means of the heat transfer and friction factor
correlations given by Gedeon and Wood for oscillating!
~ow regenerators ð03Ł[ The density rf depends on p and
Tf by means of the equation of state of the considered
~uid[

The following three simplifying assumptions are made]

"0# the speci_c potential energy of the gas ~ow is neg!
ligible compared to its speci_c kinetic energy u1:1[
Similarly\ the speci_c kinetic energy is negligible com!
pared to the speci_c enthalpy Hf of the ~uid^

"1# the ~uid is an ideal gas\ whose equation of state is]
p:rf � RTf[ In addition the caloric equations of state
are] dHf � cp\f dTf and dUf � cv\f dTf^

"2# the speci_c heats cp\f and cv\f are independent of tem!
perature[

It follows that equations "2# and "3# simplify to

rf

1u
1t

¦rfu
1u
1x

¦
1p
1x

¦frf

u1

1
0
rh

� 9 "4#

hPðTw"x\ t#−Tf "x\ t#Ł � cv\fAf

1

1t
ðrfTf "x\ t#Ł

¦cp\fAf

1

1x
ðrfuTf "x\ t#Ł[ "5#

Substituting equation "1# in equation "5# and applying
the ideal gas law\ with suitable manipulations we get the
following expression for the gas energy balance]

cp\frfu
1Tf

1x
¦cp\frf

1Tf

1t
�

1p
1t

−
h
rh

"Tf−Tw#[ "6#

Therefore\ the set of equations which must be solved
simultaneously is represented by four partial di}erential
equations\ namely equations "0#\ "1#\ "4# and "6#\ in the
unknowns] u\ p\ Tf and Tw\ depending upon x and t[ To
solve the equations listed before\ both the initial and
boundary conditions have to be _xed[

For a regenerator working at a cyclic steady!state\ the
initial conditions do not have any interest[ However\ it
may be noted that certain cyclic steady conditions must
be veri_ed at a given position within the regenerator[
They are

g
nt9¦tb

nt9

hb"Tw−Tf# dt � g
"n¦0#t9

nt9¦tb

hr "Tf−Tw# dt "7#

cwrw G
1Tw

1t
dt � 9 "8#

GAfrfu dt � 9 "09#

G
1p
1t

dt � 9[ "00#

Equation "7# says that the heat exchanged because of
convection between gas and matrix at a _xed location
during the blow period must be equal to the heat ex!
changed at the same location during the reverse period[
Equation "8# says that over a complete cycle there can be
no net heat storage by the matrix[ Equation "09# states
that the cyclic change in mass of the gas is zero and
equation "00# is merely a statement that the pressure
is cyclic[ The listed periodic steady conditions must be
satis_ed by any cyclic steady solution to equations "0#\
"1#\ "4# and "6#[

As far as the boundary conditions are concerned\ at
this step it is not convenient to _x them[ In fact\ they
will be _xed after the simpli_cation of the governing
equations discussed in the next section[

1[0[ Simpli_cation of the `overnin` equations

In order to obtain a closed!form solution of the gov!
erning di}erential equations\ further simpli_cations are
made]

"0# the matrix thermal capacity per unit volume cwrw is
in_nitely large^
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"1# the gas velocity u and pressure p are constant along
the regenerator\ i[e[ 1u:1x � 9 and 1p:1x � 9^

"2# the ~ow velocity and the pressure are quasi!station!
ary\ i[e[ 1u:1t � 9 and 1p:1t � 9^

"3# the ~uid density rf is constant and evaluated at the
average temperature Ta �"Th¦Tk#:1^

"4# the coe.cient of convective heat transfer h is con!
stant^

"5# the gas ~ow switches in equal intervals]
tb � tr � t9:1[

Among the listed simpli_cations\ the former is usually
of greater concern[ With reference to this\ it may be noted
that in rapidly cycled heat regenerators "which are herein
under discussion# the thermal capacity of the gas during
a blow is much smaller than the thermal capacity of the
matrix[

Applying the simpli_cations listed before\ the gov!
erning di}erential equations may be rewritten as follows]

+ matrix energy balance]

1Tw"x\ t#
1t

� 9cTw � Tw"x#[ "01#

This result implies that the matrix temperature at each
location x is essentially constant with time\ that is the
matrix temperature swing may be neglected^

+ gas mass balance] equation "1# is always veri_ed as u
and rf have been assumed constant[ Therefore\ it does
not give any useful information^

+ gas momentum balance]

frf

u1

1
0
rh

� 9 : f � 9[ "02#

This result implies that the ~uid is an ideal ~uid\ that is
it is not a}ected by dynamic viscosity^

+ gas energy balance]

1

1t
Tf\j "x\ t#¦uj

1

1x
Tf\j "x\ t#

� −$
hjL

"cp\frf#jrh =uj =% 0
=uj =
L 1 ðTf\j "x\ t#−Tw"x#Ł "03#

where j � b for blow period and j � r for reverse period[
According to the space coordinate system labeled in Fig[
0\ which considers as positive the gas ~ow from the cold
end of the regenerator to the hot one\ it follows ub × 9
and ur ³ 9[ Bearing in mind that the ~ow velocity has
been assumed time!independent\ it follows that

x � j¦uj "t−t# "04#

in which j represents a generic position where an element
of gas is located at a generic time instant t[ During the
blow period t and t are in the range ðnt9\ nt9¦t9:1Ł[ Dur!
ing the reverse period t and t are in the range
ðnt9¦t9:1\"n¦0#t9Ł[ If there is not any relevant di}erence
between the blow and reverse periods\ like it often

approximately corresponds to practical conditions\ we
have

hb � hr � h

ub � −ur � u

"cp\frf#b � "cp\frf#r � cp\frf[

Therefore] Lb � Lr � L[ Following Organ|s approach
ð5Ð7Ł\ the _rst term on the left!side of equation "03# is
the substantial derivative\ d:dt\ of the ~uid temperature[
Hence\ for the ~uid energy balance it follows

d
dt

Tf\j ðx"t#\ tŁ¦
Lu
L

Tf\j ðx"t#\ tŁ �
Lu
L

Twðx"t#Ł "05#

where the law of motion of the particle x"t# given by
equation "04# may be rewritten as

x"t# � j2u"t−t# "06#

"{¦| for blow period and {−| for reverse period#[ In
addition\ the cyclic steady conditions "7# and "09# sim!
plify to

Twt9 � g
nt9¦t9:1

nt9

Tf\b dt¦g
"n¦0#t9

nt9¦t9:1

Tf\r dt "07#

GT−0
f dt � 9[ "08#

Equation "07# follows from equation "7# simply applying
the result given by equation "01# and bearing in mind
that the gas ~ow has been assumed to switch in equal
intervals[ Equation "08#\ instead\ derives from equation
"09# applying the ideal gas law to rf and bearing in mind
that p and u have been assumed time!independent[ Equa!
tions "8# and "00# are always veri_ed since Tw is inde!
pendent of time ðsee equation "01#Ł and p has been
assumed constant[

Finally\ the mathematical modelling is represented by
only three equations\ namely equations "05#\ "07# and
"08#\ in the unknowns Tf"x\ t# and Tw"x#[ Therefore\
equation "08# may be considered redundant[

2[ Integration of gas energy equation and initial

location of gas particles

To calculate the ~uid temperature Tf\j"j\ t#\ the linear
_rst!order di}erential equation "05# along a path fol!
lowed by a selected gas particle given by equation "06# has
to be solved "Lagrange frame of reference#[ Its general
solution is known ð04Ł]

Tf\j "j\ t# � Tf\j ðx"ti\j#\ ti\jŁ e−Lu"t−ti\j#:L

¦
Lu
L g

t

ti\j

Twðx"t#Ł eLu"t−t#:L dt "19#

where ti\j represents the initial time instant which cor!
responds to the beginning of the considered nth semi!
period "ti\b � nt9 and ti\r � nt9¦t9:1#[ Therefore\ x"ti\j#
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appearing in equation "19# represents the initial location
xi\j of the gas particle[ It may be evaluated by means of
equation "06# simply setting t � ti\j]

x"ti\j# � xi\j � j2u"ti\j−t#[ "10#

Therefore\ the calculation of the ~uid temperature
Tf\j"j\ t# given by equation "19# requires the knowledge
of the initial ~uid temperature Tf\j"xi\j\ ti\j# � Tf\j\i which is
strictly linked to the initial location of the gas particle
when both the blow and reverse periods start[ To de_ne
the initial temperature\ two further simplifying assump!
tions are made]

"0# the cold ~uid enters the matrix from the left!side at
constant temperature Tk\ while the hot ~uid enters
from the right one at constant temperature Th "see
Fig[ 0#^

"1# the temperature of the gas exiting the matrix at the
right!hand!side "x � L# and entering the hot space
becomes instantaneously equal to Th[ Similarly\ the
temperature of the gas exiting the matrix at the left!
hand!side "x � 9# and entering the cold space
becomes instantaneously equal to Tk "see Fig[ 0#[

2[0[ Blow period

Two di}erent locations xi\b of the ~uid particle may be
considered at the beginning of the blow period "Fig[ 0#]

"0# 9 ¾ xi\b ¾ j[ The gas particle starting with this
location reaches the position j at the time
t $ ðnt9\ nt9¦j:uŁ[ In fact\ substituting xi\b � j in
equation "10# applied to the blow period\ it follows
that t � nt9^ similarly\ setting xi\b � 9 in the same
equation\ it follows that t � nt9¦j:u[ In this case
the initial temperature Tf\b"xi\b\ nt9# � T?f\b\i is not
known a priori] it depends on the thermal history
of the preceding reverse period[ According to the
considered initial location xi\b\ the ~uid temperature
given by equation "19# during the blow period
becomes

T?f\b "j\ t# � T?f\b\i e−Lu"t−nt9#:L¦
Lu
L g

t

nt9

Twðx"t#Ł eLu"t−t#:L dt

"11#

"1# x¹k ¾ xi\b ³ 9\ where x¹k � −"ut9:1−j#[ The gas par!
ticle starting with this location reaches the position j

at the time t $ ðnt9¦j:u\ nt9¦t9:1Ł[ In this case the
initial temperature Tf\b"xi\b\ nt9# � Týf\b\i is known a
priori and is equal to Tk[ However\ the element of
gas does not exchange heat with the matrix between
the instant nt9 "which corresponds to the location
xi\b# and the instant t¼b "which corresponds to the
location x � 9#[ Therefore\ in equation "19# applied
to the blow period the initial instant ti\b � nt9 has to
be replaced by the instant t¼b\ as well as the initial
position xi\b has to be replaced by the position x � 9[

Setting x � 9 in equation "06# during the blow
period\ it is easy to verify that t¼b � t−j:u[

According to the considered initial location xi\b and
bearing in mind that Tf\b"x � 9\ t¼b# � Tk\ the ~uid tem!
perature given by equation "19# applied to the blow per!
iod is

Týf\b "j\ t# � Tk e−Lj:L¦
Lu
L g

t

t−j:u

Twðx"t#Ł eLu"t−t#:L dt[

"12#

2[1[ Reverse period

Similarly to the blow period\ two di}erent locations
xi\r of the ~uid particle may be considered when the
reverse period starts "Fig[ 0#]

"0# j ¾ xi\r ¾ L[ The gas element starting with this
location reaches the position j at the time
t $ ðnt9¦t9:1\"nt9¦t9:1#¦"L−j#:uŁ[ In fact\ sub!
stituting xi\r � j in equation "10# applied to the
reverse period\ it follows that t � nt9¦t9:1^ similarly\
setting xi\r � L in the same equation\ it follows that
t �"nt9¦t9:1#¦"L−j#:u[ In this case the initial tem!
perature Tf\r "xi\r\ nt9¦t9:1# � T�f\r\i is not known a
priori] it depends on the thermal history of the pre!
ceding blow period[ According to the considered
initial location xi\r\ the ~uid temperature given by
equation "19# during the reverse period is

T�f\r "j\ t# � T�f\r\i e−Luðt−"nt9¦t9:1#Ł:L

¦
Lu
L g

t

nt9¦t9:1

Twðx"t#Ł eLu"t−t#:L dt "13#

"1# L ³ xi\r ¾ x¹ h\ where x¹ h � ut9:1¦j[ The gas particle
starting with this location reaches the position j at
the time t $ ð"nt9¦t9:1#¦"L−j#:u\ "n¦0#t9Ł[ In this
case the initial temperature Tf\r"xi\r\ nt9¦t9:1# �
T��

f\r\i is known a priori and is equal to Th[ Never!
theless\ the element of gas does not exchange heat
with the matrix between the instant nt9¦t9:1 "which
corresponds to the location xi\r# and the instant t¼r

"which corresponds to the location x � L#[ There!
fore\ in equation "19# applied to the reverse period
the initial instant ti\r � nt9¦t9:1 has to be replaced
by the instant t¼r\ as well as the initial position xi\r has
to be replaced by the position x � L[ Setting x � L
in equation "06# applied to the reverse period\ it is
easy to verify that t¼r � t−"L−j#:u[

According to the considered initial location xi\r and
bearing in mind that Tf\r"x � L\ t¼r# � Th\ the ~uid tem!
perature given by equation "19# during the reverse period
becomes
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T��
f\r "j\ t# � Th e−L"0−j:L#

¦
Lu
L g

t

t−"L−j#:u

Twðx"t#Ł eLu"t−t#:L dt[ "14#

3[ Calculation of the initial ~uid temperatures

To simplify the treatment\ the ~ushing ratio o has been
assumed to be always in the range o $"9\ 0Ł[ This assump!
tion ensures that there is not a slug of ~uid which oscil!
lates within the matrix without exiting either end[ In other
words\ it ensures that]

+ the gas particle located at xi\b $ ð9\ jŁ comes from the
hot space^

+ the gas element located at xi\r $ ðj\ LŁ comes from the
cold space[

3[0[ Blow period

The initial temperature T?f\b\i appearing in equation "11#
may be evaluated by means of equation "14#\ although
with some attention[ In fact\ T?f\b\i depends on the thermal
history of the gas particle in the preceding reverse period
whose time interval is ðnt9−t9:1\ nt9Ł[ Therefore]

T?f\b\i � Th e−Lu"nt9−t¼b#:L¦
Lu
L g

nt9

t¼b

Twðx"t#Ł eLu"t−nt9#:L dt

"15#

where t½b may be linked to the generic instant t of the
considered blow period\ that is to t $ ðnt9\ nt9¦t9:1Ł\ by
the relation t½b � 1nt9−ðt¦"L−j#:uŁ[ The law of motion
of the particle x"t#\ during the reverse period preceding
the blow period which is of interest\ may be combined to
the coordinates j and t by

x"t# � j−u"t−nt9#¦u"nt9−t#[

3[1[ Reverse period

The initial temperature T�f\r\i appearing in equation "13#
may be evaluated by using equation "12#\ bearing in mind
that T�f\r\i depends on the thermal history of the gas par!
ticle in the preceding blow period whose time interval is
ðnt9\ nt9¦t9:1Ł[ Therefore]

T�f\r\i � Tk e−Luð"nt9¦t9:1#−t¼rŁ:L

¦
Lu
L g

nt9¦t9:1

t½r

Twðx"t#Ł eLuðt−"nt9¦t9:1#Ł:L dt "16#

where t½r may be linked to the generic instant t of
the considered reverse period\ that it to
t $ ðnt9¦t9:1\"n¦0#t9Ł\ by the equation
t½r � 1"nt9¦t9:1#−"t¦j:u#[ The law of motion of the gas
element x"t#\ during the blow period preceding the reverse

period which is herein under discussion\ may be com!
bined to the coordinates j and t by

x"t# � j¦uðt−"nt9¦t9:1#Ł−uð"nt9¦t9:1#−tŁ[

4[ Fluid temperatures as functions of the matrix

temperature

Once the initial temperatures T?f\b\i and T�f\r\i have been
calculated\ the gas temperatures Tf\b and Tf\r may be
obtained as shown below[

4[0[ Blow period

Substituting the temperature T?f\b\i given by equation
"15# in equation "11# and changing the variable of inte!
gration in the integrals on the right!hand term of equation
"11#\ time variable t : space variable x\ we get

T?f\b "j\ t# � e−Lj:L $Th eL"1xi\b:L−0#

−
L
L

e1Lxi\b:L g
xi\b

L

Tw"x# e−Lx:L dx

¦
L
L g

j

xi\b

Tw"x# eLx:Ldx% "17#

where T?f\b depends on time t by means of xi\b\ as shown
by equation "10# applied to the blow period "j � b and
{¦|#[ Instead\ changing the variable of integration in the
integral on the right!side of equation "12#\ t : x\ we get

Týf\b "j# � e−Lj:L $Tk¦
L
L g

j

9

Tw"x# eLx:L dx% "18#

where Týf\b is independent of time[ Therefore]

Tf\b � 6
T?f\b "j\ t# t $ ðnt9\ nt9¦j:uŁ

Týf\b "j# t $ ðnt9¦j:u\ nt9¦t9:1Ł
[

In a dimensionless form]

uf\b � 6
u?f\b "y\ t¦# t¦ $ ð9\ oy:1Ł

uýf\b "y# t¦ $ ðoy:1\ 0:1Ł
"29#

where u?f\b and uýf\b may be obtained normalising equations
"17# and "18#\ respectively]

u?f\b "y\ t¦# � e−Ly $eL"1qb−0#−L e1Lqb g
qb

0

uw"s# e−Ls ds

¦L g
y

qb

uw"s# eLs ds% "20#

uýf\b "y# � L e−Ly g
y

9

uw"s# eLs ds[ "21#

In equation "20# qb � x¦
i\b � y−1t¦:o[
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4[1[ Reverse period

Substituting the temperature T�f\r\i given by equation
"16# in equation "13# and changing the variable of inte!
gration in the integrals on the right!side of equation "13#\
t : x\ we get

T�f\r "j\ t# � eLj:L $Tk e−1Lxi\r:L

¦
L
L

e−1Lxi\r:L g
xi\r

9

Tw"x# eLx:L dx

−
L
L g

j

xi\r

Tw"x# e−Lx:L dx% "22#

where T�f\r depends on time t by means of xi\r[ Instead\
changing the variable integration in the integral on the
right!hand term of equation "14#\ t : x\ we have

T�f\r�"j# � eLj:L $Th e−L−
L
L g

j

L

Tw"x# e−Lx:L dx% "23#

in which T�f\r� is independent of time[ Therefore]

Tf\r � 6
T�f\r"j\ t# t$ ðnt9¦t9:1\"nt9¦t9:1#¦"L−j#:uŁ

T�f\r�"j# t$ ð"nt9¦t9:1#¦"L−j#:u\"n¦0#t9Ł
[

In a dimensionless form]

uf\r � 6
u�f\r "y\ t¦# t¦ $ ð0:1\ 0:1¦o"0−y#:1Ł

u�f\r�"y# t¦ $ ð0:1¦o"0−y#:1\ 0Ł
"24#

where u�f\r and u�f\r� may be obtained by normalising equa!
tions "22# and "23#\ respectively]

u�f\r "y\ t¦# � L eLy $e−1Lqr g
qr

9

uw"s# eLs ds

−g
y

qr

uw"s# e−Ls ds% "25#

u��
f\r "y# � eLy $e−L−L g

y

0

uw"s# e−Ls ds%[ "26#

In equation "25# qr � x¦
i\r � y¦1"t¦−0:1#:o[

5[ Matrix temperature

The matrix temperature uw"s#\ which appears in the
integrals of equations "20#\ "21#\ "25# and "26#\ may be
evaluated by means of equation "07#[ This equation can
be suitably rewritten in a dimensionless form as follows

uw � g
0:1

9

uf\b dt¦¦g
0

0:1

uf\r dt¦ "27#

whose integrals on the right!hand term\ bearing in mind
equations "29# and "24#\ are

g
0:1

9

uf\b dt¦ � g
t¦
c\b

9

u?f\b dt¦¦g
0:1

t¦
c\b

uýf\b dt¦ "28#

g
0

0:1

uf\r dt¦ � g
t¦
c\r

0:1

u�f\r dt¦¦g
0

t¦
c\r

u��f\r dt¦ "39#

where t¦
c\b � oy:1 and t¦

c\r � 0:1¦o"0−y#:1[ To evaluate
the matrix temperature uw\ it is convenient to write it as
follows]

uw"y# � uw\o�9"y#¦F"y# "30#

where the function F"y# represents the di}erence between
the actual temperature uw"y# when o $"9\ 0Ł and the linear
temperature uw\o�9"y# when o � 9[ It is given by ð05\ 06Ł

uw\o�9"y# �
L

L¦1
y¦

0
L¦1

[

Substituting equation "30# in equations "20#\ "21#\ "25#
and "26#\ new expressions for the temperatures u?f\b\ uýf\b\
u�f\r and u��

f\r may be obtained[ They are

u?f\b �
L

L¦1
y¦

1
L¦1

eL"qb−y#

¦L e−Ly $g
y

qb

F"s# eLs ds−e1Lqb g
qb

0

F"s# e−Ls ds% "31#

uýf\b �
L

L¦1
y¦L e−Ly g

y

9

F"s# eLs ds "32#

u�f\r �
L

L¦1
y¦

1
L¦1

−
1

L¦1
eL"y−qr#−L e−Ly

= $e−1Lqr g
9

qr

F"s# eLs ds¦g
y

qr

F"s# e−Ls ds% "33#

u��
f\r �

L
L¦1

y¦
1

L¦1
¦L e−Ly g

0

y

F"s# e−Ls ds[ "34#

Now\ substituting equations "31#Ð"34# in equation "27#\
combined to equations "28# and "39# and applying the
integration by parts formula linked to the Leibnitz| the!
orem for di}erentiation of an integral\ we have

F"y# � H"y#¦g
0

9

F"s#K"s\ y# ds[ "35#

This is a linear integral equation generally known as the
Fredholm equation of the second kind ð07Ł\ in which y is
the independent variable\ H"y# and K"s\ y# are known
functions given in Appendix A and F"y# is the unknown
function[ Applying the integral equation theory ð07Ł\ it
may be proven easily that equation "35# has a solution
and it is unique[ It is

F"y# �"A0y
1¦B0y¦C0# eLy¦"A1y

1¦B1y¦C1# e−Ly

"36#

where the coe.cients Ak\ Bk and Ck "k � 0\ 1# are given
in Appendix B[ Because the function F"y# is not linear
along the regenerator "although it is very close to be
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linear#\ the dimensionless matrix temperature given by
equation "30# is not rigorously linear with the dimen!
sionless space coordinate y[

6[ Fluid temperatures

Once the F"y# function has been evaluated\ the gas
temperatures within the regenerator during both the blow
period and the reverse period may be obtained[

6[0[ Blow period

Substituting the F"y# function given by equation "36#
in equations "31# and "32# and solving the integrals
appearing on the right!hand terms of these equations\ we
get

u?f\b �
L

L¦1
y¦

1
L¦1

eL"qb−y#

¦e−Lyp1"y#¦e−Ly"e1Lqb ðp2"y � 0#

¦"m0q
2
b¦m1q

1
b¦m2qb#Ł¦"s0q

2
b¦s1q

1
b¦s2qb## "37#

uýf\b �
L

L¦1
y¦p0"y# e−Ly[ "38#

In equation "37# the functions pk"y# "k � 1\ 2#\ as well as
the constant sk and mk "k � 0\ 1\ 2#\ are given in Appendix
C[ It may be noted that when o � 9\ u?f\b is de_ned over
the domain t¦ $ ð9\ 9Ł[ Therefore\ it does not exist at any
time[ In equation "38# the function p0"y# is still given in
Appendix C[ It may be observed that when o � 9\ uýf\b is
de_ned over the domain t¦ $ ð9\ 0:1Ł which represents the
whole blow period and p0"y# � 9 "see Appendices B and
C#[

The ~uid temperature during the blow period\ given
by equation "29# linked to equations "37# and "38#\ is
represented graphically in Fig[ 1 as a function of t¦

with y as a parameter[ The matrix temperature "time!
independent# is represented too[ It may be noted that the
~uid temperature function is not continuous at the point
t¦ � oy:1[ This discontinuity is due to the second sim!
plifying assumption made in Section 2 and it may also be
observed in Fig[ 2\ where uf\b is plotted against y with t¦

as a parameter[
Figure 1 shows that\ at a _xed location y within the

regenerator\ the matrix does not give up heat to the gas
at all times during the whole blow period[ In fact\ when
t¦ $ ð9\ t¦

baŁ\ the ~uid gives up heat to the matrix and
subsequently\ when t¦ $ ðt¦

ba\ 0:1Ł\ it absorbs heat from
the matrix\ where t¦

ba is the abscissa value of the point of
intersection of curves uf\b and uw[ In particular\
t¦

ba � oy:1 in Figs 1"a#Ð"c#[
It may be easily proven that the area enclosed between

curves uw and uf\b in Fig[ 1\ given by Ð0:1

9
"uw−uf\b# dt¦\

represents the dimensionless heat Q¦
b supplied from the

matrix to the gas during the blow period at a given
location y[ This heat is]

Q¦
b �

Q
b

1Q
b\max

�
g

nt9¦t9:1

nt9

hP"Tw−Tf\b# dt

1hP"Th−Tk#"t9:1#

and may be de_ned as the ratio of the heat Q
b actually
exchanged during the blow period per unit of length to
an ideal amount of heat "maximum# Q
b\max which would
be exchanged during the same period per unit of length
if the matrix temperature could be equal to Th and the
~uid temperature could be equal to Tk "multiply by 1#[

6[1[ Reverse period

Substituting the F"y# function given by equation "36#
in equations "33# and "34# and solving the integrals
appearing on the right!hand terms of these equations\ we
obtain

u�f\r �
L

L¦1
y¦

1
L¦1

ð0−eL"y−qr#Ł

−eLyp2"y#−eLy"e−1Lqr ðp1"y � 9#

¦"s0q
2
r ¦s1q

1
r ¦s2qr#Ł¦"m0q

2
r ¦m1q

1
r ¦m2qr## "49#

u��
f\r �

L
L¦1

y¦
1

L¦1
¦eLy ðp2"y � 0#−p2"y#Ł[ "40#

In equation "49# the functions pk "k � 1\ 2# and the con!
stants sk and mk "k � 0\ 1\ 2#\ are given in Appendix C[ It
may be noted that when o � 9\ u�f\r is de_ned over the
domain t¦ $ ð0:1\ 0:1Ł[ Therefore\ this function does not
exist at any time[ In equation "40# the function p2"y# is
still given in Appendix C[ It may be observed that when
o � 9\ u�f\r� is de_ned over the domain t¦ $ ð0:1\ 0Ł which
represents the whole reverse period and
p2"y# � p2"y � 0# � 9 "see Appendices B and C#[

The ~uid temperature during the reverse period is rep!
resented graphically in Fig[ 3 as a function of t¦ with y
as a parameter[ The matrix temperature is represented
too[ A discontinuity in the ~uid temperature function
when t¦ � 0:1¦o"0−y#:1 is present[ It may be also
noted in Fig[ 4\ where uf\r is plotted against y with t¦ as
a parameter[

Figure 3 shows that at a _xed location y the gas does
not give up heat to the matrix at all times during the
entire reverse period[ In fact\ when t¦ $ ð0:1\ t¦

ra Ł\ the
matrix gives up heat to the ~uid and subsequently\ when
t¦ $ ðt¦

ra \ 0Ł\ it absorbs heat from the ~uid\ where t¦
ra is

the abscissa value of the point of intersection of curves
uf\r and uw[ In particular\ t¦

ra � 0:1¦o"0−y#:1 in Figs
3"d#Ð"f#[

The area enclosed between curves uf\r and uw in Fig[ 3\
given by Ð0

0:1"uf\r−uw# dt¦\ represents the dimensionless
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Fig[ 1[ Dimensionless temperatures " ~uid and matrix# as a function of dimensionless time t¦ with y as a parameter during the blow
period[ In all cases "a#Ð" f# o � 9[4 and L � 0[

heat Q¦
r supplied from the gas to the matrix during the

reverse period at a given location y[ This heat is]

Q¦
r �

Q
r

1Q
r\max

�
g

"n¦0#t9

nt9¦t9:1

hP"Tf\r−Tw# dt

1hP"Th−Tk#"t9:1#

where Q
r � Q
b "cQ¦
r � Q¦

b # because the regenerator is
working at a cyclic steady!state[

6[2[ Entire operation cycle

Combining curves of Figs 1 and 3 yields curves shown
in Fig[ 5\ where the ~uid temperature is plotted vs t¦

with y as a parameter during an entire operation cycle of

the regenerator[ It may be observed graphically that] "0#
the following relationships are veri_ed at any y $ ð9\ 0Ł]

uýf\b "y\ t¦ � 0:1# � u�f\r "y\ t¦ � 0:1#

u��
f\r "y\ t¦ � 0# � u?f\b "y\ t¦ � 9#[

It is an elementary\ though lengthy matter\ to prove ana!
lytically the relations listed before^ "1# uf\ and\ therefore\
Tf\ is a periodic and steady function[

7[ Conclusions

The proposed fully analytical method allows the cyclic
steady operation of a rapidly switched _xed!bed heat
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Fig[ 2[ Dimensionless temperatures " ~uid and matrix# as a function of dimensionless length y with t¦ as a parameter during the blow
period[ In all case "a#Ð"g# o � 9[4 and L � 0[
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Fig[ 3[ Dimensionless temperatures " ~uid and matrix# as a function of dimensionless time t¦ with y as a parameter during the reverse
period[ In all cases "a#Ð" f# o � 9[4 and L � 0[

regenerator in counter~ow to be analysed[ In particular\
it allows the e}ects of the ~ushing phase on the thermal
response of the regenerator to be established[ They are]

+ the matrix temperature is not a linear function of the
location^

+ the ~uid temperature depends on the time although
the thermal capacity of the matrix has been assumed
in_nitely large[ In particular\ this time!dependence
happens in the _rst part both of the blow period and
of the reverse period^

+ when the blow period "known as the heating period
for the ~uid# starts\ the ~uid gives up heat to the matrix
and only subsequently absorbs heat from the matrix^

+ when the reverse period "known as the cooling period

for the ~uid# starts\ the ~uid absorbs heat from the
matrix and only subsequently supplies heat to the
matrix[

In addition\ the area enclosed between the dimen!
sionless temperature curves of ~uid and matrix at a given
location within the regenerator during a semi!period rep!
resents the dimensionless heat exchanged between matrix
and gas at that location during that semi!period[ Thus\ a
ready estimation of this heat may be obtained graphi!
cally[

The obtained results are very useful for rapidly cycled
heat regenerators adopted in Stirling cycle machines and
gas turbines\ where the phenomenon of the ~ushing phase
happens and the thermal capacity of the gas during a
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Fig[ 4[ Dimensionless temperatures " ~uid and matrix# as a function of dimensionless length y with t¦ as a parameter during the reverse
period[ In all cases "a#Ð"g# o � 9[4 and L � 0[
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Fig[ 5[ Dimensionless ~uid temperatures as a function of t¦ with y as a parameter during the whole regenerative period t¦ $ ð9\ 0Ł[

blow is much smaller than the thermal capacity of the
matrix[

Appendix A

The functions H"y# and K"s\ y# appearing in equation
"35# are

H"y# �
o

L"L¦1#
ðe−L"0−y#−e−LyŁ

K"s\ y# � 6
K0"s\ y# y $ ð9\ yŁ

K1"s\ y# y $ ðy\ 0Ł

K0"s\ y# � oðeL"s−y# "L:o−Ly¦0¦Ls#−G"s\ y#Ł:1

K1"s\ y# � oðe−L"s−y# "L:o¦Ly¦0−Ls#−G"s\ y#Ł:1

G"s\ y# � ðe−L"s¦y#¦eL"s¦y−1#Ł:1[

The function K"s\ y# is generally known as the kernel of
the integral equation[

Appendix B

The constants Ak\ Bk and Ck "k � 0\ 1# appearing in
equation "36# are

A0 � A0\0:"L¦1#

B0 � A0\1:"L¦1#

C0 � "A0\2¦A9#:"L¦1#

A1 � B0\0:"L¦1#

B1 � B0\1:"L¦1#

C1 � "B0\2¦B9#:"L¦1#

where the coe.cients A9\ B9\ A0\k and B0\k "k � 0\ 1\ 2#
have the following expressions]

A9 � o e−L:L

B9 � −o:L

A0\0 � −o1 e−L:3

B0\0 � o1:3

A0\1 �
o

L
e−L $

L
1
"o−0#¦

o

1
"e−L:1−0#%

B0\1 �
o

L $
o

1
"e−L:1−0#−L:1%

A0\2 �
o

1L
e−L $1L 00−

o

11¦0o¦
0
11

¦
o

3L
e−1L¦

e−L

1 00¦
o

1L1%
B0\2 � −

o

L $
e−L

3
"0¦o#¦

o

7L
"0¦e−L# e−L¦0:3%[

Appendix C

The functions pk"y# "k � 0\ 1\ 2# and the constants sk

and mk "k � 0\ 1\ 2#\ which appear in equations "37#Ð"40#\
are

p0"y# � a0"y#L¦b0"y# e1Ly¦g0

p1"y# � a0"y#L¦b0"y# e1Ly¦g1

p2"y# � a1"y#L−b1"y# e−1Ly¦g0

s0 � −A1L:2

s1 � "A1−B1L#:1

s2 � "A1L¦B1#:1−C1L
m0 � −A0L:2

m1 � −"B0L¦A0#:1
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m2 � "A0L−B0#:1−C0L

where

a0"y# �
A1

2
y2¦

B1

1
y1¦C1y

b0"y# �
0
1 $A0y

1¦0B0−
A0

L 1 y−1g0%
g0 �

0
1 $0B0−

A0

L 1
0

1L
−C0%

a1"y# �
A0

2
y2¦

B0

1
y1¦C0y

b1"y# �
0
1 $A1y

1¦0B1¦
A1

L 1 y¦1g1%
g1 �

0
1 $0B1¦

A1

L 1
0

1L
¦C1%

and the constants Ak\ Bk and Ck "k � 0\ 1# are given in
Appendix B[
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